Related
Africa joins the race to trace Covid-19 with genomics
Peter van Heusden 20 Apr 2020
Covid-19 testing: the answers to six simple questions
Glenda Mary Davison 27 Mar 2020
Brazil's birth rate not affected by Zika
5 Apr 2017
“EVs are like messages in a bottle between cells,” said senior author of the study, Quan Lu, associate professor of environmental genetics and pathophysiology at Harvard TH Chan School of Public Health. “We think that within the next few years, we may be able to swap the endogenous molecules in ARMMs for therapeutic cargos - such as antibodies - and to engineer ARMMs to home in on a particular tissue.”
There are an estimated 37 trillion cells in the human body - and 100 times that many EVs. They circulate in the blood and other bodily fluids and are involved in processes such as coagulation and the immune response. They can also be hijacked to spread cancer or viruses like HIV and Ebola.
EVs are generating a great deal of interest in the biotechnology field. Researchers believe that the molecules they carry include the fingerprints of disease and harmful environmental exposures. Work is already underway on developing a “liquid biopsy” to test EVs in a drop of blood.
Previous work by Lu’s lab described the body’s mechanism for producing ARMMs. Unlike other EVs, which are generated within cells, ARMMs are secreted directly from the plasma membrane at the cell’s surface. Although the physiological function of ARMMs remains unknown, the way that they are made may make them uniquely suited to carry certain molecules.
In the current study, the researchers found that ARMMs contain molecules used for Notch signalling, a type of intercellular communication that normally requires cell-to-cell contact. Notch receptors are plasma membrane proteins involved in critical physiological roles such as embryonic development, tissue homeostasis, and stem cell function. According to the new findings, ARMMs are able to facilitate Notch receptor signalling at a distance.
“Our research on ARMMs has tremendous potential for therapeutics and public health,” Lu said. While other researchers have explored using EVs to deliver therapeutics, directing them within the body has been an obstacle. Lu believes that ARMMs provide a way past that barrier, and he was recently awarded a patent for generating, isolating, and engineering ARMMs. “It will likely be at least 10 years before we see these methods used in a clinical setting,” Lu said. “But the path forward is clear.”