Related
The future is hospitable, indeed
Sherif Mamdouh 12 Jun 2018
Yale researchers find new recipe for novel proteins
Bill Hathaway 17 Dec 2013
Yale team uses cells to expand nature's repertoire
Bill Hathaway 17 Dec 2013
Matthew Paszek, assistant professor of chemical and biomolecular engineering at Cornell and Valerie Weaver, at the University of California, San Francisco, led the study on glycoprotein-induced cancer cell survival, published online in Nature.
The researchers found that long glycoprotein chains on a cancer cell's surface cause the cell membrane to push away from its environment and bend inward. This physical change causes adhesion receptors on the cell surface called integrins to clump together. Integrins bind to protein scaffolds in their environment and regulate pretty much everything a cell does - movement, change and growth.
This clustering mechanism causes the integrins to alter the cell's normal signaling, leading to unchecked growth and survival.
"Changes to the sugar composition on the cell surface could alter physically how receptors are organized," he said. "That's really the big thing: coupling the regulation of the sugar coating to these biochemical signaling molecules."
The paper, "The cancer glycocalyx mechanically primes integrin-mediated growth and survival," was the subject of a "News and Views" feature in Nature.
Source: Cornell University